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Coherence resonance in influencer networks
Ralf Tönjes 1✉, Carlos E. Fiore 2 & Tiago Pereira 3,4

Complex networks are abundant in nature and many share an important structural property:

they contain a few nodes that are abnormally highly connected (hubs). Some of these hubs

are called influencers because they couple strongly to the network and play fundamental

dynamical and structural roles. Strikingly, despite the abundance of networks with influen-

cers, little is known about their response to stochastic forcing. Here, for oscillatory dynamics

on influencer networks, we show that subjecting influencers to an optimal intensity of noise

can result in enhanced network synchronization. This new network dynamical effect, which

we call coherence resonance in influencer networks, emerges from a synergy between net-

work structure and stochasticity and is highly nonlinear, vanishing when the noise is too weak

or too strong. Our results reveal that the influencer backbone can sharply increase the

dynamical response in complex systems of coupled oscillators.
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A central discovery in network science is that a small group
of highly connected hubs can couple to the network more
strongly than their peers and greatly influence the net-

work behavior1–6. Examples of network influencers can be found
in neuroscience (e.g., normal and aberrant synaptic con-
nectivity7–10), political opinions (e.g., election blogging11 or social
networks), and man-made scale-free networks (e.g., the inter-
net1). Surprisingly, the presence of such influencers makes syn-
chronization of deterministic network dynamics more difficult
because networks with influencers require stronger coupling than
homogenous networks12,13; indeed, in many situations, syn-
chronization of influencer networks cannot be achieved at all14,15.
This observation is all the more remarkable because synchroni-
zation plays a fundamental role in regulating network
function16,17 and is mediated predominantly through
influencers7,18,19. This raises a crucial question: why have many
real-world networks evolved to contain influencers when they
appear to be detrimental to the network dynamics, at least at face
value?

While strong random fluctuations usually have a negative effect
in complex systems it has long been recognized that a small
amount of noise can actually improve the system response and its
ability to process information. Known mechanisms for such a
constructive influence of noise are stochastic resonance, coher-
ence resonance and noise induced synchronization20–30. The
term coherence resonance is used to describe an optimal response
of noise-induced oscillations without external stimmulus in
excitable cells22. It was observed in globally coupled systems23, in
homogeneous networks24,25, in non-excitable systems near a
Hopf bifurcation26 and two coupled oscillators27. The effects of
coherence resonance and its role in heterogeneous networks such
as influencer networks remains elusive.

In this work, we show that stochastic forcing of influencers can
lead to an optimal collective network response. Strikingly, introduc-
tion of noise synergizes with the network structure to create collective
oscillations that become optimal at a given noise strength in the
influencers. This phenomenon emerges in two steps. First, the net-
work acts as a nonlinear filter for the stochastic influencer dynamics,
and at an optimal noise strength, the influencers induce synchroni-
zation in the nodes directly connected to them. Second, different
parts of the network develop macroscopic dynamics and interact
indirectly through the influencers. We develop an adiabatic theory to
uncover this macroscopic interaction law and show that it mediates
the emergence of global collective oscillations. When the noise in the
influencers is either too weak or too strong, the coupling vanishes.
Interestingly, at a macroscopic level, the interaction between different
parts of the network can be described by a hyper-graph.

We refer to a network where most nodes couple predominantly
to a small number of influencers as an influencer network, and
refer to the remaining nodes as followers (Fig. 1). As generic
oscillatory dynamics, we consider a network of phase oscillators

_ϑn ¼ ωn þ
λn
μn

XN
m¼1

Wnmgðϑm; ϑnÞ þ
ffiffiffiffiffiffiffiffi
2Dn

p
ξn: ð1Þ

Here, ωn is the natural frequency of node n, which couples with
strength λn to the weighted mean of the coupling functions g to
neighboring nodes m. Given a network weight coupling matrix
Wnm ≥ 0, which is nonzero if node n receives a link from node m,
the intensity μn is the total coupling weight received by the nth
node. A table of parameters and their function is provided in
Methods. The coupling

gðϑm; ϑnÞ ¼ sin ϑm � ϑn � αð Þ þ c0 ð2Þ
is generic for weakly coupled, nearly identical oscillators31,32. The
parameter α is called phase frustration and the bias c0 is due to

shear, an amplitude dependence of the frequency33,34. The effect
of shear is a shift in the average frequency proportional to the
coupling strength. Phase equations with this form of coupling g
are known as the Kuramoto-Sakaguchi model35,36 and are widely
applied across scientific disciplines31–36. In addition, each termffiffiffiffiffiffiffiffi
2Dn

p
ξn denotes uncorrelated Gaussian white noise of strengths

Dn. In many studies, the coupling strength λn to the local mean-
field is chosen to be uniform, in which case the coupling is called
normalized. In real-world and experimental systems, though,
coupling may be heterogenous and hubs can couple more
strongly to the network5,18. We model this coupling as

λn ¼
βnλ0 for influencers

λ0 for followers :

�
ð3Þ

For simplicity, throughout this exposition we consider the cou-
pling intensity βn = β, the noise strength Dn = D, and the fre-
quency ωn = ω, to be identical for all influencers. For the
followers we assume a Lorentzian frequency distribution with
mean frequency ω0 and width γ0. Noise is of identical strength
Dn = D0 in all followers. We denote Δω = ω − ω0 the average gap
in natural frequencies between influencers and followers.

In Methods we show how Eq. (1) can be recast in terms of
dimensionless effective parameters shown in Table 1. These
effective parameters, and in particular the influencer effective
noise strength q = D/ΔΩ, play key roles in the collective
dynamics of the system. The dynamical frequency gap ΔΩ/λ0
leads to a time scale separation between the dynamics of the
followers and the influencers. A coupling intensity β of com-
parable but smaller magnitude leads to an effective coupling
strength Λ close to one for which the effect of coherence reso-
nance is most pronounced. We note that the dynamical frequency
gap needs to be large in units of λ0, but it can be small in natural
time units. In Supplementary Note 1, we present an example of
the transformation for realistic parameters in Eq. (1) to effective
parameters.

We divide the followers into partitions Pσ of nodes connected
to the same set of influencers. In Fig. 1, we show an influencer
network with two influencers (a and b) and three partitions of
followers (σ = 1,2,3), which are connected to influencers a, b, or
both (see additional examples in Supplementary Note 2). To
capture the collective dynamics in each partition σ, we introduce
the complex mean-fields

ZσðtÞ ¼
1

jPσ j
X
n2Pσ

eiϑnðtÞ ð4Þ

The modulo of the complex mean-field Rσ = ∣Zσ∣ is the partition
order parameter; that is, Rσ = 0 for incoherent, uniformly dis-
tributed phases and Rσ = 1 in full synchrony. Similarly, the global
mean-field Z and order parameter R are defined by summing over
all followers in the network.

Results
With deterministic influencers where q = 0, and when ∣Λ∣ < 1, the
influencers cannot frequency lock to the followers. Synchroniza-
tion of the followers through the influencer backbone is poor and
counteracted by noise and frequency heterogeneity in the fol-
lowers. Our results show that by setting a weak noise strength or
frequency heterogeneity in the followers and by changing the
effective noise q in the influencers, synchronization of the whole
network increases, reaches a maximum, and then decreases.

We numerically integrate our model Eq. (1) in dimensionless
units (Table 1) for the network with two influencers (as shown in
Fig. 1) with 300 identical followers in each partition, and a small
fixed noise strength in the followers. By changing the noise
strength in the influencers, we then obtain the distribution of the
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order parameter R as a function of q. After a transient, the order
parameter is independent of the initial conditions. At an optimal
noise strength, R reaches its maximum (in expected value), as
shown in Fig. 1 for ΔΩ/λ0 = 18 (panel c) and for ΔΩ/λ0 = 198
(panel d). The solid line is a theoretical prediction in the ther-
modynamic limit for heterogeneous followers using a slow-fast
approximation. Frequency heterogeneity and noise in the fol-
lowers have qualitatively and quantitatively the same desyn-
chronizing effect. Optimal synchronization of the whole network
is predicted theoretically and achieved in all simulations for an
effective noise strength q ≈ 1 in the influencers, see details in
Methods. Our mean-field analysis predicts that the effect of
coherence resonance is only observed for very small frequency
heterogeneity or noise in the followers, below a threshold that
depends on Λ (Supplementary Note 3).

In Fig. 2, we show the time series of the order parameter R
for two complex and real-world networks. The upper row
represents a scale-free network and the lower row the directed
neural network in the model organism Caenorhabditis elegans.
We assign the role of influencers to the K most strongly

connected nodes and use a weighted connectivity matrix
Wnm = 1 for all connections from or to an influencer, and
Wnm = 0.01 for all other connections. For small effective noise
q in the influencers (Fig. 2, q weak), the order parameter fluc-
tuates at a low level. When q = 1 (q optimal), the order para-
meter fluctuates around a value close to 1, revealing coherent
collective oscillations. Finally, when q is large (q strong), the
order parameter decreases again, revealing the loss of syn-
chrony. All parameters for the simulation and numerical
scheme can be found in Methods. In Supplementary Note 4, we
show three additional examples of coherence resonance in
influencer networks; with 3 influencers, a random network with
100 influencers, and a network of linked political blogs.

Stochastic forcing by a single influencer. Let us consider a single
influencer. When its followers are asynchronous, the sinusoidal
contributions in the sum of the coupling functions for that
influencer average out, and the influencer phase is effectively
decoupled from the followers. The influencer is independent of

q q

a b

c d

Fig. 1 Coherence resonance in an influencer network. Distribution of the order parameter R versus the effective diffusion q in the influencers. a Influencers
a and b are hubs that couple strongly to the network, and all other nodes are regarded as followers. Three distinct partitions of followers are shown in red,
blue, and green, which connect to influencer a, b, and both a and b, respectively. In our simulation, each partition has 300 followers. b Mean-field theory
predicts that the interactions of the partition mean-fields take place in a hyper-graph mediated by the coupling functions Ga and Gb see Methods. c, d For
each value of effective noise strength q in the influencers, we plot the density of the global order parameter R on a color scale from 0 (white) to the
maximum value (dark blue). At an optimal noise strength, the mean value of the global order parameter reaches a maximum, revealing the coherence
resonance effect. In c the dynamical frequency gap between influencers and followers ΔΩ/λ0 = 18 is moderate, whereas in d ΔΩ/λ0 = 198 is large. The
solid red line in c is our analytical prediction.

Table 1 Effective dynamical parameters in influencer networks. We obtain these parameters as described in Methods. These are
key parameters in the description of coherence resonance and the optimal noise strength in the influencers.

Parameter Meaning range

ΔΩ/λ0 = Δω/λ0 + (β − 1)c0 dynamical frequency gap ΔΩ/λ0 ≫ 1
Λ = βλ0/ΔΩ dimensionless coupling strength Λ < 1
q = D/ΔΩ influencer effective noise strength q = O(1)
D0/λ0 followers effective noise strength D0/λ0 ≪ 1
γ0/λ0 followers frequency heterogeneity γ0/λ0 ≪ 1
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the network and acts as a common stochastic force on the fol-
lowers connected to it. The additive noise in the influencer enters
the dynamics of its followers multiplicatively through the cou-
pling function. That is, the network acts as a nonlinear filter for
the noise in the influencers. We can show that the effective dif-
fusion constant of the integrated stochastic forcing in the fol-
lowers, a proxy for the noise strength, attains a maximum at an
optimal effective noise strength

qopt ¼ 1 : ð5Þ

We present the calculations in Methods and further details in
Supplementary Note 5. When oscillations are driven by common
multiplicative noise, the effect of noise-induced synchronization
can be observed28–30. As the common noise intensity is increased
the oscillators synchronize faster. This suggests that at this opti-
mal value of q the incoherent state will be most unstable. How-
ever, behavior of the noise transfer does not explain the
synchronization between different partition mean-fields. Because
this synchronization requires studying macroscopic dynamics of
R far from zero, our next goal is to uncover the interaction
function between the mean-fields in different partitions.

Mean-field dynamics of partitions takes place in a hyper-
network. For simplicity, we provide an analysis of the influencer
network shown in Fig. 1. Mean-field equations for mixed repul-
sive and attractive coupling or intra- and inter-partition inter-
actions in the followers can be generalized from these results. In
Methods, we show that assuming large partition sizes ∣Pσ∣ ≫ 1,
large dynamical frequency gap ΔΩ/λ0 ≫ 1, and noise free fol-
lowers D0 = 0 with frequency heterogeneity γ0, it is possible to
derive averaged dynamics of the partition mean-fields Zσ in an
adiabatic approximation. The resulting deterministic equations
have the structure of a hyper-network. In our example, the

governing equations are

_Z1 ¼ FðZ1;GaÞ; _Z2 ¼ F Z2;
1
2
Ga þ

1
2
Gb

� �
and _Z3 ¼ FðZ3;GbÞ

ð6Þ
where the coupling functions are

Ga ¼ Gðwa1Z1 þ wa2Z2Þ and Gb ¼ Gðwb2Z2 þ wb3Z3Þ: ð7Þ
F describes a Riccati force (see Methods). The weights wkσ with
∑σwkσ = 1 denote the relative size of partition σ among all fol-
lowers of influencer k. Note that, while in the microscopic
description the connections between nodes are pairwise, at the
level of mean-fields, edges represented by a coupling function Gk

for each influencer can connect multiple partitions of followers.
Thus, the mean-field interaction between different parts of the
network is described by a hyper-graph.

The interaction functions Ga and Gb can be determined
analytically; they depend on Λ and q, are maximal at an optimal
noise strength, and vanish at critical values of q. That is, at weak
or strong noise in the influencers, the hyper-network interactions
vanish, revealing the highly nonlinear nature of the phenomenon.
In particular, this means that the macroscopic fields will not
interact in the strong noise limit. We derive the analytic
expressions for the coupling functions Gk(Z; Λ, q) in Methods.

Global synchronization and resonance. When influencers have
equal parameters q and Λ the synchronization manifold Zσ = Z is
invariant under (6) and (7) and stable for phase-attractive cou-
pling. Hence, the macroscopic fields synchronize and we can
explain the global coherence resonance by restricting the analysis
to this invariant subspace. Our mean-field theory predicts both
effects: the coherence resonance of the partition order parameters
and phase synchronization of the partition mean-fields as shown
in Methods. The solid line in Fig. 1 (right) is the stationary
average order parameter predicted by our theory in the infinite

Fig. 2 Coherence resonance of the order parameter in different complex networks. a–c, e–g The time series of the order parameter R for three values of
noise strength in the influencers for weak q = 0.1 (a, e), optimal q = 1 (b, f), and strong q= 10 (c, g). d, h show the corresponding networks with d a scale-
free network with exponent 21 and h C. elegans directed neural network3. See Methods for further details. Additional examples can be found in
Supplementary Note 5.
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time-scale separation limit and with frequency heterogeneity γ0/
λ0 = 0.02 in the followers. The predicted values agree with
simulations of the finite size network, large dynamical frequency
gap ΔΩ/λ0 = 198 and identical followers with noise D0/λ0 = 0.02.
In Supplementary Information, we provide two short movies
displaying synchronization of the network in Fig. 1 at an optimal
noise strength in the two influencers.

Discussion
We have found a new effect induced by a synergy between noise
and network structure to generate a transition towards a syn-
chronization that would not be possible in the absence of noise.
The key element for this effect is the existence of influencers – a
group of hubs that couple strongly and connect different parts of
a network. Although deterministic network parameters prevent
synchronization, we show that an optimal noise strength in the
influencers can induce and mediate synchronization. The
mechanism for this coherence resonance in influencer networks is
different from the known effect of coherence resonance in
homogeneous networks with excitatory dynamics, where noise
simply excites oscillations23–25. At the macroscopic level, the
interaction between different parts of the network is indirect and
takes place on an emerging hyper-network, thus changing the
interaction structure from the microscopic level. Such higher
order interactions have previously been conjectured and reported
in neuronal data recordings37. Our findings suggest that the
emergent order in complex systems could be controlled by reg-
ulating the noise in only a few key nodes.

Methods
Canonical form. To bring the Eq. (1) into a dimensionless form with effective
parameters given in Table 1, we change the time scale to units of 1/λ0 and add the
frequency shift from the bias c0 in the coupling function to the natural frequencies
of the oscillators, i.e., ωn ↦ ωn + λnc0 and gðϑm; ϑnÞ ! sinðϑm � ϑn � αÞ. The
difference between the average follower frequency and the frequency of an influ-
encer, both including the frequency shift from the coupling bias, is the dynamical
frequency gap ΔΩ/λ0 (in units of λ0). Observing the invariance of the phase
equations under a global phase shift, i.e., ϑ → ϑ − ω0t, we can go into a co-rotating
reference frame where the average follower frequency is zero. The deviations of the
follower frequencies from their mean frequency ω0 may be written as γ0νn where
the νn are taken from some standard distribution with mean zero and the factor
γ0≥0 characterizes the frequency heterogeneity. Then the phase equations for the
followers in the new time units and co-rotating reference frame are

_ϑn ¼ γ0
λ0

νn þ
λn
λ0

1
μn

X
k

Wnk sinðϑk � ϑn � αÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dn=λ0

p
~ξn ð8Þ

and for the influencers with phases ψk

_ψk ¼
ΔΩk

λ0
1þ Λk

1
μk

X
m

Wkm sinðϑm � ψk � αÞ
 !

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qk

ΔΩk

λ0

s
~ξk: ð9Þ

Here, Λk = λk/ΔΩk is the ratio between the coupling strength and the frequency of
the influencer. In the noise free case, phase locking is only possible for ∣Λk∣ > 1.
Changing Λ can lead to a discontinuous, explosive synchronization12,38. The terms
~ξm are independent white noise with h~ξmðtÞ~ξnðt0Þi ¼ δmnδðt � t0Þ in the new units
of time and qk is the effective noise strength in the influencers on the fast time scale
ΔΩk/λ0. In Supplementary Note 1, we provide examples of such rescaling.

Parameters and their meaning. In Table 2, we present the main parameters that
naturally appear in the phase model Eq. (1) and give rise to effective parameters, as
shown in Table 1 in the main text. The main parameters in our mean-field analysis
are shown in Table 3.

Simulations and parameter values. In our analysis and our simulations, we use
the transformed, dimensionless canonical form (8) and (9) of the phase equations
(1). Existing connections in the network from and to the influencers are given the
weight Wmn = 1 and connections between followers Wnm = 0.01. The followers
couple to their neighbors with strength λn = λ0 and influencers with strength
λk = βλ0. The phase frustration in the coupling function is set to α = −0.1. The
frequency deviations νn of the followers are drawn from a Cauchy distribution p
(ν) = 1/π(ν2 + 1) and multiplied by γ0/λ0. Thus, frequency heterogeneity and noise
strength in the followers are given by γ0/λ0 and D0/λ0, respectively. We chose

βk = β, λk = βλ0 and Dk = D for all influencers, so that ΔΩ/λ0, Λ and q are identical
for all influencers. We integrate the Langevin equations of the phases with an
Euler-Maruyama scheme and small time steps dt = 5 ⋅ 10−4 because of the large
time scale separation ΔΩ/λ0 ≫ 1.

The parameters of Fig. 1 are as follows: The network structure is a pure
influencer network without connections between followers or between influencers.
We simulate 300 identical followers γ0/λ0 = 0 in each of the three partitions with
small independent noise D0/λ0 = 0.02. In the lower left panel we have β = 10, a
dynamical frequency gap of ΔΩ/λ0 = 18 and an effective influencer coupling
strength Λ = 10/18. In the lower right panel β = 100, ΔΩ/λ0 = 198 and Λ = 100/
198. For each value of the effective influencer noise strength q = D/ΔΩ we record a
histogram of the order parameter over T = 104 time units, which is much longer
than the relaxation time of R. The theoretical prediction, the solid line in the lower
right panel, is for noiseless followers D0 = 0 and γ0/λ0 = 0.02.

Parameters of Fig. 2 are as follows: For the C. elegans directed neuronal
network3, we choose the top K = 15 out-degree nodes as influencers. All nodes
with zero in-degree have been removed, resulting in a network with N = 268 nodes.
Connections between followers are given the weight Wnm = 0.01. We simulate
identical followers γ0/λ0 = 0 with small independent noise D0/λ0 = 0.02. The
dynamical frequency gap between followers and influencers is ΔΩ/λ0 = 18 and the
effective coupling strength in the influencers is Λ = 10/18. Shown are three time
series of the network order parameter for small (q = 0.1), optimal (q = 1), and
large (q = 10) noise strength in the influencers. The undirected scale-free network
with exponent 2 is the largest connected component of a network generated via a
configurational algorithm1 without self loops or double edges. We chose the top 5
degree nodes as influencers. The other parameters are the same as in the C. elegans
neuronal network.

Mean-field dynamics in influencer networks. We have developed a mean-field
theory for undirected influencer networks with connections exclusively between
influencers and followers, as shown in Fig. 1. This theory can be generalized to
more complex configurations, heterogenous influencers, directed, attractive, or
repulsive coupling between followers and influencers, within partitions or between
different partitions. While these generalizations may lead to more complex
dynamic behavior, the mechanism for the coherence resonance is apparent in the
simplest model.

We consider the network as a union of a set P of followers and a set I of
influencers. The nodes n connected to an influencer k are elements n ∈ Pk of the
periphery of the influencer k. Intersections of the sets Pk form equivalence classes
or partitions Pσ of followers that are connected to the same subsets Iσ of influencers
such as in Fig. 1 all followers connected to influencer a or b or to both influencers.
The phases of the oscillators are encoded as complex variables zn ¼ expðiϑnÞ for
the followers and zk ¼ expðiψkÞ for the influencers. The dynamics can be
formulated in terms of partition averages and averages over the influencers of these
partitions

Zσ ¼ 1
jPσ j

X
n2Pσ

zn ð10Þ

hσ ¼ e�iα

2i
1
jIσ j
X
k2Iσ

zk ð11Þ

hk ¼
e�iα

2i
1

jPkj
X
n2Pk

zn ¼ e�iα

2i

X
σ

wkσZσ : ð12Þ

Table 2 Parameters in the model presented in Eq. (1) of the
main manuscript.

Parameter Meaning

ωn isolated frequency of the nth oscillator;
set as ωn = ω0 + γ0νn for followers and ω for influencers

ω0 mean frequency of the followers
γ0νn frequency deviation ωn − ω0 of the nth follower
γ0 scale parameter of follower frequency distribution
Δω gap (ω − ω0) between influencer and average follower

frequency
Wnm nonnegative matrix of connection weights
μn connection intensity (μn = ∑mWnm)
λn coupling strength of the nth oscillator;

λ0 for followers and βλ0 for influencers
β coupling intensity for influencers
Dn noise strength set as D for influencers and D0 for followers
α phase frustration in the coupling function g
c0 shear parameter in the coupling function g
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Here, hσ and hk are the forces acting on the followers in partition σ and on the
influencer k. The weight wkσ is the relative size of partition σ in the periphery of an
influencer k; that is, wkσ = ∣Pσ∣/∣Pk∣ when Pσ ⊆ Pk or wkσ = 0 otherwise. Thus, the
phase dynamics (8) and (9) can be written in complex form as

_zn ¼ izn �hσzn þ
γ0
λ0

νn þ hσ�zn

� �
þ izn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D0=λ0

p
ξnðtÞ; n 2 Pσ ð13Þ

_zk ¼ izk
ΔΩk

λ0
Λk

�hkzk þ 1þ Λkhk�zk
� �þ izk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dk=λ0

p
ξkðtÞ ð14Þ

The first reduction of model complexity is via the Ott-Antonsen approach39 for
followers without Gaussian white noise but frequency heterogeneity γ0/λ0 with
Cauchy-distributed frequency deviations νn. In the thermodynamic limit ∣Pσ∣ → ∞
(keeping the ratios wkσ of the partition sizes constant) there exists a globally
attractive invariant manifold on which the mean-fields Zσ evolve by a complex
Riccati equation as

_Zσ ¼ i �hσZ
2
σ þ i

γ0
λ0

Zσ þ hσ

� �
¼ FðZσ ; hσÞ: ð15Þ

For large partition sizes, Eqs. (10)–(15) provide a good description of the system
dynamics, including an accurate description of the fluctuations of the mean-fields
(see Supplementary Note 6). The effect of small noise D0/λ0 in the followers is
comparable to the effect of frequency heterogeneity γ0/λ0. For small white noise,
the Ott-Antonsen manifold is no longer invariant but one can derive a hierarchy of
corrections to the dynamics (15) in increasing orders of the noise strength. To the
zeroth order the effects of frequency heterogeneity and noise are identical40. In fact,
if the noise in the followers is white Cauchy noise, the equivalence of noise and
frequency heterogeneity is exact41.

Slow-fast dynamics. If there is a large dynamical frequency gap ΔΩk/λ0 ≫ 1
between the followers and an influencer, oscillators in the follower group experi-
ence an average force from the fast influencer. Conversely, if the followers are
desynchronized, the mean-field of the followers vanishes and the influencer phases
perform a drift diffusion process on the circle

_ψk ¼
ΔΩk

λ0
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dk=λ0

p
~ξkðtÞ ð16Þ

whereas the followers connected to only that influencer experience a stochastic
forcing by the influencer phase

_ϑn ¼ γ0
λ0

νn þ sin ψk � ϑn � α
� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2D0=λ0
p

~ξnðtÞ: ð17Þ

This forcing is multiplicative since sin ψk � ϑn � α
� � ¼ sk cos ϑn � ck sin ϑn with

two uncorrelated but not independent random processes skðtÞ ¼ sinðψk � αÞ and
ckðtÞ ¼ cosðψk � αÞ. The diffusion constants Ds and Dc for the integrated sto-
chastic forces quantify an effective noise strength and can be calculated as the
integral of the respective autocorrelation functions42

Ds

λ0
¼ Dc

λ0
¼ λ0

2
Dk

ΔΩ2
k þ D2

k

¼ λ0
2ΔΩk

qk
1þ q2k

: ð18Þ

We present the details in Supplementary Note 5. By changing the noise strength
Dk, the effective noise strengths Ds and Dc have a maximum at Dk = ΔΩk or
qk = Dk/ΔΩk = 1. At this noise value, and for incoherent followers, the effect of
noise-induced synchronization29 is expected to be strongest. As the amplitudes of
sk and ck are bounded, when Dk or the time scale separation ΔΩ/λ0 are further
increased the effective noise strengths go to zero.

For ΔΩ/λ0 ≫ 1, the system has slow and fast dynamics and we can replace the
influencer phases zk contributing to the force fields hσ(11) in each partition σ by the
expected values Gk of zk subject to Langevin equation (14). On the fast time scale of
the influencers, the fields hk are changing very slowly and can assumed to be
constant for the calculation of the Gk. In this averaged dynamics, the influencers
create an average force Hσ that follows the partition mean-fields adiabatically. The

slow dynamics of the partition mean-fields is thus given as

_Zσ ¼ i �HσZ
2
σ þ i

γ0
λ0

Zσ þ Hσ

� �
¼ FðZσ ;HσÞ ð19Þ

Hσ ¼ e�iα

2i
1
jIσ j
X
k2Iσ

Gk

X
σ 0

wkσ 0Zσ 0 ; Λk; qk

 !
: ð20Þ

This corresponds to a hyper-graph with partitions σ as nodes and coupling functions
Gk for each edge k of the hyper-graph. General setups can be considered as well, with
intra and inter-partition coupling and connections between influencers. The absence
of such connections shows that the synchronization is indeed a noise-induced effect.

Mean-field of the fast influencers. The Langevin equation (14) for zk with
constant fields hk is indeed a complex formulation of the noisy Adler equation42

_ψ ¼ ΔΩ

λ0
1þ 2ΛIm he�iψ

� 	� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2D=λ0

p
ξðtÞ: ð21Þ

The expected value G of z ¼ expðiψÞ is the first circular moment of the stationary
distribution which has an expression as a continued fraction42 and evaluates to a
ratio of confluent hypergeometric limit functions 0F1(o, x)43. It can be derived from
the Fokker-Planck equation noting that the Fourier modes pk ¼ hexpðikψÞi of the
stationary distribution pst(ψ) are in a tridiagonal recurrence relation

0 ¼ ikΔΩ Λ�hpkþ1 þ pk þ Λhpk�1

� �� Dk2pk ð22Þ
which is solved by a continued fraction. Defining q = D/ΔΩ and

s ¼ jhj
ih

; o ¼ 1� i
1
q
; and x ¼ q

Λjhj ð23Þ

we have G = p1 and

G ¼ 1

oþ x�2

ðoþ1Þþ x�2
ðoþ2Þþ¼

1
sx

¼ 0F1ðoþ 1; x�2Þ
0F1ðo; x�2Þ

1
sox

: ð24Þ

Synchronization manifold and prediction of order parameter. If all influencers
have the same effective noise strength q ¼ qk ¼ Dk

ΔΩk
and the same effective coupling

strength Λ ¼ Λk ¼ βλ0
ΔΩk

, the synchronization manifold where all partitions have

identical mean-fields Zσ = Z = RiΘ is invariant under the averaged dynamics (19)
and (20) on the hyper-graph and we can write

_Z ¼ i �HZ2 þ i
γ0
λ0

Z þ H

� �
ð25Þ

H ¼ e�iα

2i
G Z; Λ; qð Þ ð26Þ

where G(Z; Λ, q) is defined as (24) with

h ¼ e�iα

2i
Z: ð27Þ

In particular, because of rotational symmetry, the dynamics of the amplitude
R = ∣Z∣ does not depend on the angle Θ of the mean-field

_R ¼ Re
e�iα

2
GðR; Λ; qÞ


 �
1� R2
� �� γ0

λ0
R: ð28Þ

If the synchronization manifold is stable, the stable fixed points of this dynamics
where _R ¼ 0 approximate the average order parameter over all followers. From
(28) we find that the level sets of the right-hand side of

γ0
λ0

¼ Re
e�iα

2
GðR; Λ; qÞ


 �
1� R2

R
ð29Þ

determine this average order parameter R for any given γ0/λ0 implicitly. We show
this prediction for γ0/λ0 = 0.02 and Λ = 0.51 as a solid line in the lower right panel

Table 3 Parameters of the mean-field analysis presented in Eq. (6).

Parameter Meaning

Pσ follower partitions according to the influencers they connect to
Iσ set of influencers of a partition σ
Zσ complex mean-field of partition σ (order parameter Rσ = ∣Zσ∣)
Gk coupling function between mean-fields mediated by influencer k
wkσ relative size of partition σ among the followers of influencer k
F Ricatti vector field see Eq. (15)
hσ, hk forces on oscillators in partition σ and on influencer k
Hσ average of hσ obtained from adiabatic mean-field approximation
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in Fig. 1. Further resonance curves and maxima of R for different heterogeneities γ0
and different Λ can be found in Supplementary Note 3.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
Input files or sets of input parameters for Fortran as well as self-developed Python codes
are available from the corresponding author upon request.
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